BENZENE VAPOR TRANSPORT: MEASUREMENT AND MODELING TO EVALUATE REMEDIAL SYSTEM PERFORMANCE & PREDICT POTENTIAL EXPOSURE TO VOCs IN AMBIENT AIR

National Ground Water Association 2009 Ground Water Summit General Session III

April 22, 2009

Presented by Alberto A. Gutierrez, CPG 6421, AZ PG18002

Presentation Outline

- Introduction and Background
- Contaminant Fate and Transport and Remediation Summary
- Modeling Benzene Transport in Ambient Air
- Model Predictions of Benzene Concentrations vs. Measured Ambient Air Values at Receptors
- Conclusions

Introduction and Background

- ➡ Pipeline Booster Station on About 60' of Alluvial Deposits Overlying Impermeable 50' Thick Shale
- Groundwater Flow Towards & into Adjacent Swamp
- Historic Leaks and Remediation
- Benzene Exceeds Regulatory Standards Swamp & GW
- Suit by Nearby Residents Claiming Exposure to Benzene in Ambient Air from Swamp

Contaminant Fate and Transport and Remediation Summary

Contaminant Fate and Transport and Remediation Summary

- Complicated Hydrogeology
 - Discontinuous, Variable-Permeability Lithology
 - Multi-Layered GW Flow System
 - Geometry of Materials Controls GW Flow & VOC Behavior

Cross Section A – A' (NW-SE, West Side of Site)

Contaminant Fate and Transport and Remediation Summary

- Continuing Contamination of GW due to GW Level Fluctuations at Facility (BTEX Compounds Remain in Subsurface)
- → Potential Off-gassing of Benzene from Contaminated GW & Surface Water (Seeps and Swamp)

Location of Important Features in Area of Subject Facility

7 Steps for Modeling Benzene Transport in Ambient Air with Calculated Sources

- Develop Ambient Air Dispersion Model of Study Area Using EPA-Approved ISCST 3 Model & Local Meteorological Data
 - Construct Model Grid Over Entire Study Area
 - Establish Key Receptor Points at Plaintiff Residences and Other Key Locations
- 2) Identify all Benzene Sources
 - Point Source from Tanks/Facility (Fugitive Emissions)
 - Point Source Emissions Remediation AS/SVE System
 - Area Sources Ground and Surface Water Off-Gassing
 - Mobile Point Sources (Vehicle Emissions)
- 3) Calculate Benzene Emission Rates from Each Sources
 - ➡ Fugitives from Tanks/Facility used AP 42 Est. of Fugitives from EPA Guidance
 - ➡ Remediation AS/SVE System used Direct Stack Test Measurements
 - Ground and Surface Water Off-Gassing Estimated via EPA -454/R-92-024 Method for Calculating Off-gassing from Surface Waters
 - Vehicle Emissions not considered but traffic counter installed to count cars in event of anomalous results

7 Steps for Modeling Benzene Transport in Ambient Air with Calculated Sources (Cont.)

- 4) Run Model for Five Year Time Period (2000-2005)
- 5) Obtain Predicted Benzene Values at Each Receptor
- 6) Run Sensitivity Analysis on Model to Evaluate Performance
- 7) Verify Model by Comparing Results to Measured Benzene Values at Each Receptor

Modeling Benzene Transport in Ambient Air with Measured Flux from Area Sources

- ◆ All 7 Modeling Steps Identical to Initial Model Except Treatment of Emission Rates from Area Sources (swamp and seeps)
- ⇒ Flux Measurements Used to:
 - Measure Area Source (swamp and seeps) Emission Rates
 - Replace Calculated Emission Rates for Area Sources from Step 3 in Original Model with Measured Flux Rates
 - Evaluate Effectiveness of Remedial System Modifications
- Swamp & Seep Sources Measured Directly by Flux Chamber
 - EPA- Approved Technology (1985 NTIS PB-223162)
- ⇒ Flux Measurements Performed over:
 - Representative Areas of Seep/Swamp Source Areas
 - Facility & Site Areas Undergoing Remediation via Air Sparging/SVE
 - Prior to, During & After Sparge Rate Modifications

What is Flux Chamber Sampling & How Does it Work?

- ➡ Allows Direct Measurement of Emission Rate of VOCs from Area Sources in Their Natural Condition
- Technique:
 - Chamber Placed over Surface & Sealed to Surface
 - Swept with Ultrapure Air Until Steady State is Reached
 - Sample Withdrawn with a Summa Canister (same as used for Ambient Air Sampling)

Flux Chamber Sampling

Ambient Air Characterization Combined with Flux Sampling for Model Verification

- ⇒Air Modeling Study Results
 - No Significant Concentrations of BTEX Predicted in Study Area & at Plaintiffs' Residences
- Initial Ambient Air Screening
 - Passive Samplers at 11 Locations Over 10 Day Period
 - Full QA/QC Completed Including 100% Duplicate Samples, Spikes, Blanks & Independent Laboratory
 - Very High Data Reliability

Flux & Ambient Air Measurements at Site

⇒ Goals:

- Evaluate Effect of Increased Air Sparging Rate
- Obtain Better Reliability & Lower Detection Levels at Model Receptor Locations

⇒ Sampling:

- Flux Chamber Sampling
- Ambient Air Sampling
- Three Separate Sampling Events over 9 Month Period
- Detection Limits at Parts Per Trillion Levels

Flux Chamber Sampling Results

- Benzene Overlying GW
 - 0.04 to 1.59 μg/m² per minute (Contaminated Area)
 - 0.025 to 0.037 µg/m² per minute (Uncontaminated Area Background)
- Benzene Over Surface Water Seeps & Swamp
 - 0.47- 1.50 μg/m² per minute (Contaminated Areas)
 - 0.013 to 0.042µg/m² per minute (Uncontaminated Areas)
- Benzene over Air Sparge Area
 - Did not Change Measurably with Doubling of Sparging Rate
 - Indicates that SVE was Adequate to Keep Pace with Increased Volatilization

Ambient Air Sampling

Ambient Air Sampling Results

- Benzene in Ambient Air at Receptor Locations
 - 0.30 to 1.60 µg/m³ (0.09 to 0.51 ppb)
 - No Significant Difference Between Background & Potentially Impacted Locations
- Results Comparable to National Data on Benzene In Ambient Air in Rural Areas
 - 0.50 to 10.9 µg/m³ (0.16 3.5 ppb) in Rural Areas Such as the Study Area
- ⇒ Benzene Above Contaminated Swamp Surface
 - 1.36 μg/m³ (0.44 ppb)

Model Verification

- Model Predicted Conservative Ambient Air Values at Receptors Based on Calculated Sources
- When Sources in Model Adjusted Using Flux Data, Predicted Ambient Air Values Lower
- Measured Ambient Air Values Significantly Lower than Model Predictions at all Plaintiffs' Residences

Model Predicted 8hr Values vs Actual Measured 8hr Values Benzene in μg/m³

Arrows Show Receptors at Increasing Distance Away from Source Area

Conclusions

- ⇒ ISCST MODEL is a Conservative Predictor of Transport of Benzene & other Contaminants in Ambient Air
- ➡ Benzene Off Gassing only Occurs Directly over Contaminated Groundwater
 - Background Flux Measured when over 100 feet from Plume Edges
- Ambient Air VOC Concentrations Predicted by Model
 - Fully Protective of Health & Environment (conservative)
 - Measured Values Have Better Agreement with Predicted Values with Increasing Distance From Source
 - Predicted Values 2-3x Higher than Actual Measured Values in Immediate Vicinity of Source
- ⇒ Flux Chamber Measurements are Excellent Method to Quantify VOC emissions to Evaluate Indoor Air Intrusion or Ambient Air Effects at VOC-Contaminated Sites

